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but does not alter c-Ha-Ras mRNA or protein expressionB
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Abstract

An accumulating body of evidence suggests that resveratrol can inhibit carcinogenesis through antiproliferative and apoptotic effects. One

proposed mechanism for this is the modulation of genes, for example, Ras and p53, frequently associated with human cancer. To test the

effect of resveratrol on gene expression, we used the WR-21 cell line because it contains a mutated human c-Ha-ras gene. Cells at z70%

confluency were incubated with media alone or with increasing concentrations of trans-resveratrol (0.1–1000 AM) for 24 h. Resveratrol

(30–100 AM) decreased cellular proliferation by 80% (bromodeoxyuridine incorporation) and increased apoptosis by 60% (TUNEL). Cells

were then treated with media alone or with 50-AM resveratrol for 24 h. RNAwas isolated for nylon-based macroarray analyses and protein for

immunoblotting. Resveratrol increased (+) and decreased (�) gene expression associated with apoptosis (Birc5+, Cash+, Mcl-1+, Mdm2+,

Rpa-like+), cellular proliferation (Ctsd+, Mdm2+, Egr1+, ODC+) and cell cycle (cyclin D+, cyclin g+, Gadd45a�, Mad2l�, Mdm2+).

Resveratrol consistently increased by z6-fold Mdm2 expression and other downstream p53 effectors, but not p53 itself at 24 h. Subsequent

cell cycle analysis indicated a significant accumulation of cells in G2/M, and a decrease in G1/G0 suggesting a G2/M blockade. Further RT-

PCR and Western blot analyses indicated no differential changes in Ras mRNA expression or p21ras protein levels, respectively. These results

suggest that resveratrol potently inhibits cellular proliferation, increases apoptosis, alters cell cycle dynamics and modulates associated gene

expression. Furthermore, these effects appear mediated, in part, by p53 without direct modulation of mutant c-Ha-ras expression.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

An increasing number of studies clearly suggests that

individuals who consume three or more servings of fruits

and vegetables per day have a lower risk for cancer [1,2].

This inverse association has been recognized and attributed,
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in part, to the antioxidant potential of individual compo-

nents. The mechanisms contributing to this protective effect

are unclear but likely involve the interaction of dietary

molecules with potentially deleterious reactive oxygen

species (ROS).

One dietary antioxidant that has received increasing

attention for its potential contribution as a dietary chemo-

preventive agent is the phytoalexin resveratrol [3–7]. This is

based on striking inhibitory effects on cellular events

associated with cancer initiation, promotion and progression

[8,9]. trans-Resveratrol (3,4V,5-trihydroxy-trans-stilbene) is a
naturally occurring phytochemical found in grapes, wine,

peanuts and cranberries and is produced in response to

environmental stress where it functions as a naturally

occurring plant antibiotic. The initial interest in resveratrol

was for prevention of cardiovascular disease (CVD) because

it is found in high concentrations in grape skins and red

wines [10]. Consumption of the latter is often inversely
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associated with CVD. In 1997, a landmark paper clearly

suggested the potent chemopreventive effects of resveratrol

against the three stages of carcinogenesis [9]. Since then,

resveratrol has received increasing attention for its potential

contribution as a dietary chemopreventive agent [3–7].

Studies thus far demonstrate that resveratrol inhibits

initiation and promotion of carcinogen-induced skin cancer

in mice and subsequent malignant progression due, in part,

to modulation of metabolism of polyaromatic hydrocarbons,

that is, benzo(a)pyrene [8,9,11]. The protective mecha-

nism(s) of resveratrol are unclear and merit further

investigation particularly regarding in vivo models.

The Ras protooncogene is the most frequently mutated

oncogene in human cancer, occurring in ~30% of all human

cancers and up to 97% in some cancers [12]. The functional

spectrum of the Ras G-protein superfamily encompasses

almost all cellular processes due to expansive and functional

connectivity of effector pathways [13]. However, any one

of many single genetic mutations, and specifically at

codons 12, 13, 59 and 61, can foster expression of a highly

oncogenic p21ras kilodalton protein locking the cell into an

actively proliferating state through continuous activation of

kinase signaling pathways [14]. The Ras GTPases function

as molecular switches that link external, extracellular stimuli

with a diverse range of intracellular outcomes [15]. As a

result, a major aspect of the choice between life and death in

a cell depends largely on Ras expression. Recently, p21ras

has been identified as a common signaling target linking

free radical production, alterations in cellular redox status

and cell signaling [16]. Moreover, ras is both stimulated by

and produces ROS during cell signaling, further supporting

the emerging role of low-level ROS in cell signaling

pathways and potential disruption by supplemental antiox-

idants [17]. Since Ras is overexpressed in a large number of

cancers and is pivotal in multiple signal transduction

cascades, inhibition of Ras signaling has become an

emerging therapeutic target.

Mutations of the p53 tumor suppressor gene and the ras

protooncogene are the two most prevalent genetic alter-

ations in human cancers [12,18]. Upon DNA damage, p53

halts the cell cycle at the G1 checkpoint and directs mutated,

irreparable cells to undergo apoptosis before mutations can

become permanent or fixed [19]. The functions of proto-

oncogenic Ras and p53 tumor suppressor proteins are often

considered opposing processes in maintaining cell number

balance [20]. However, Ras is purported to regulate the p53

pathway through at least three specific pathways, as well as

function through p53-independent mechanisms [21]. More-

over, p21ras, typically a proliferative protein, may paradox-

ically induce cell cycle arrest, induce p53 and its target

genes to arrest proliferation and induce senescence suggest-

ing potential interaction of p53 and Ras.

The increasing use of individual, purified antioxidants as

dietary supplements, often in high doses, has stimulated

growing concern due to the lack of scientific data regarding

the potential adverse effects on cells. As a result, it is vital
to study the effects of antioxidant supplementation at the

cellular and molecular levels particularly in the context of

neoplasia. The use of transgenic mice designed to over-

express activated forms of oncogenes such as Ras repre-

sents a novel approach in understanding the complex

multistage nature of carcinogenesis and has permitted

linkage of genes with specific tumor processes. One useful

novel in vitro model derived from a transgenic mouse is the

WR-21 cell line [22]. This cell line was derived from a

submandibular salivary adenocarcinoma and induces ag-

gressive highly anaplastic solid tumors when injected into

athymic nude mice. Cells from this transgenic mouse

express an activated human c-Ha-Ras transgene (mutated

at codon 12) and express mutant (Asp 12) human 21-kDa

Ras protein as well as p53.

In the current study, we used the WR-21 cell line to

explore the potential effect of resveratrol on oncogenic ras

expression and subsequent changes in cellular proliferation,

apoptosis, cell cycle and associated gene expression. After

conducting a dose response study, we selected a single

concentration of resveratrol to test at a single commonly

used time point to determine any potential effects on gene

expression and ultimate cell number balance.
2. Materials and methods

2.1. Chemicals

Dimethylsulfoxide (DMSO), resveratrol (3,4V,5-trihy-
droxy-trans-stilbene) and other cell culture reagents were

purchased from Sigma-Aldrich (St. Louis, MO). Plastic-

ware, including multiwell plates and flasks, was purchased

from Corning (Corning, NY).

2.2. Cell culture

WR-21 murine salivary tumor cells were purchased

from American Type Culture Collection (Rockville, MD)

and cultured in flasks at 378C in a humidified 5% CO2

atmosphere. Cells were grown in DMEM containing 4.5 g/L

glucose and supplemented with 10% FBS, 1% penicillin/

streptomycin solution and 1% amphotericin B solution.

Stock flasks were grown to approximately 70% conflu-

ency and subcultured routinely. Medium renewal was

twice weekly.

For experiments, cells were grown in T25 and T75 flasks

or multiwell plates. At approximately 70% confluency,

medium was removed and cells were treated with either

medium alone containing 0.2% DMSO vehicle control or

increasing concentrations of trans-resveratrol (0.1–1000

Amol/L). After a 24-h incubation, medium was removed,

cells were washed twice with PBS and harvested according

to the specific assay.

2.3. Bromodeoxyuridine incorporation assay

Cellular proliferation was assessed using a bromodeox-

yuridine (BrdU) incorporation assay. Control and treated
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cells were pulsed with BrdU label (1:2000) at the time of

resveratrol addition and incubated for 24 h. After washing

the monolayers with HBSS, cells were harvested and

BrdU incorporation into DNA determined by ELISA as

described by the manufacturer (Trevigen, Gaithersburg,

MD). After the addition of stop solution, samples were

analyzed at dual wavelengths of 450–540 nm on a

SpectraFluor Plus multiwell plate reader (Tecan, Research

Triangle Park, NC).

2.4. TUNEL assay

Late apoptosis was analyzed by the TUNEL method

using a colorimetric kit as described by the manufacturer

(Trevigen). Control and treated cells were washed with

HBSS, fixed with buffered formaldehyde, permeabilized

with methanol and incubated with biotinylated nucleotide

(1 h at 378C with reaction mix). After incubation,

streptavidin–HRP was added followed by stop solution

(2 N HCl), and samples were analyzed at 450 nm.

2.5. Agarose gel electrophoresis

Late apoptosis was also analyzed by DNA fragmenta-

tion, or DNA banding, using agarose gel electrophoresis.

DNA was extracted from control and treated cells using a

DNA mini-prep kit (Qiagen, Valencia, CA). DNA (10 Ag/
well) was loaded onto a 1.2% agarose gel and electro-

phoresed for 1 h at 85 V using TBE running buffer

(89 mM boric acid, 89 mM Tris base, 2 mM EDTA). DNA

was visualized by ethidium bromide intercalation into

DNA and photodocumented.

2.6. Lactate dehydrogenase release

To determine disruption of the plasma membrane as an

indicator of necrosis, we analyzed the release of cytoplas-

mic lactate dehydrogenase (LDH) into the medium as

previously described [23]. An aliquot of media was

removed from wells of control and treated cells and

centrifuged to remove any nonadherent debris. Monolayers

were then washed with HBSS, trypsinized and centrifuged

(1000�g, 10 min at 258C). Harvest solution (2 ml of 1%

Triton X-100) was added to each pellet, sonicated for 5 s

(output control, 2; duty cycle, 20%) using a Branson

sonifier (Branson, Golden, CO), and incubated on ice for

1 h. Both conditioned medium and supernatant from the cell

suspensions were analyzed. To each sample, reaction

mixture (150 Al) containing 85-AM NADH and 23 mM

pyruvate in 0.1 M phosphate buffer (pH 7.5) was added to

initiate the enzymatic reaction, and the rate of change in the

absorption at 340 nm was monitored for 10 min (Beckman

DU-640 UV/vis spectrophotometer, Fullerton, CA). The

amount of cellular LDH released to the medium was

calculated from the maximal rate of change in absorbance

and the extinction coefficient 6.3�103 L/(mol cm). Data are

expressed as nanomole of NADH oxidized per minute per

milligram protein.
2.7. Macroarray analysis of gene expression

Differential gene expression was analyzed using three

independent pathway-specific nylon-based macroarrays

(125 genes per array) containing multiple transcription

factors and genes associated with apoptosis, cell cycle or

signal transduction. To perform gene array analysis, total

RNA was extracted from cell samples using an RNA Midi

kit (Qiagen) and quantitated by UV spectroscopy using a

Beckman Coulter DU 640 spectrophotometer. Quality of

RNA samples was routinely determined by formaldehyde

gel electrophoresis run for 1 h at 70 V using MOPS

running buffer (200 mM MOPS, 50 mM sodium acetate

and 10 mM EDTA). After quantitation, total RNA (5 Ag)
from either control or resveratrol treated cells was reverse-

transcribed to the corresponding cDNA using a proprietary

primer mix according to manufacturer’s directions (Super-

Array, Frederick, MD). The synthesized cDNA probes for

control and treated samples were independently hybridized

to gene-specific cDNA fragments of specific pathways

spotted on nylon membranes. After addition of CDP-Star

chemiluminescent substrate (Applera, Norwalk, CT), the

macroarrays were exposed to film and quantitated by

densitometry using ScanAlyze and GEArray software

programs (SuperArray). All arrays were repeated in four

to six independent experiments.

2.8. Quantitation of macroarray gene expression

Expression differences between control and treated were

calculated by the ratio of control membrane intensity (of

gene spot) to the internal control (h-actin) for that

membrane divided by the ratio of the treated membrane

intensity (same gene spot) to the respective membrane

internal control. The use of glyceraldehyde phosphate

dehydrogenase (GAPDH) and h-actin to calculate response

ratios allowed comparison of all independent experiments.

A ratio greater than 1 indicated a treatment-related gene

induction and ratio less than 1 indicated a treatment-related

suppression of gene expression.

2.9. Cell cycle kinetics by flow cytometry analysis

The DNA content of fixed cells was analyzed with

propidium iodide (PI) to determine whether resveratrol

affected cell cycle kinetics. After treatment with DMSO

vehicle or 50-AM resveratrol in T25 flasks for 24 h,

media was removed and cells were rinsed with PBS.

Cells were trypsinized and collected, and 1�106 cells

were suspended in PBS. After brief centrifugation (5 min

at 1000�g), cells were resuspended in 0.5 ml of PBS,

and 4.5 ml of 70% ethanol was added to fix and

permeabilize the cells.

Cells were centrifuged for 5 min at 1000�g and the

supernatant was decanted. The cell pellet was washed with

PBS and resuspended in 1 ml of PI (100 Ag/ml)/0.1% Triton

X-100 solution containing RNaseA. After incubation for

15 min at 378C, the DNA content was analyzed on a Coulter
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XL MCL cytometer to determine the relative percentage of

cells in each phase of the cell cycle.

2.10. Western analysis for p21ras expression

After 24 h, control and treated monolayers were washed

with PBS and lysis buffer (1% Triton X-100, 25 mM Tris

HCl, 150 mM NaCl, 5 mM EDTA) containing a protease

inhibitor cocktail (Roche Diagnostics, Penzberg, Germany)

was added. Cells were mechanically disrupted, transferred

to Eppendorf tubes and incubated at 48C with agitation for

1 h. After incubation, lysed cells were centrifuged for 10 min

at 16,000�g to precipitate cellular debris. An aliquot of

supernatant was used to determine protein concentration by

the bicinchoninic acid assay (Pierce, Rockford, IL).

Samples containing 25 Ag of protein was separated by

SDS-PAGE (4% stacking gel, 12% separating gel),

transblotted to a nitrocellulose membrane and probed

using a monoclonal rat anti-v-H-ras antibody and an

HRP-conjugated IgG secondary antibody (Zymed, San

Francisco, CA). A purified Ha-ras standard (Panvera,

Carlsbad, CA) was used as a positive control. Membranes

were incubated with SuperSignal West Pico chemilumi-

nescent substrate as described by the manufacturer

(Pierce), exposed to film and quantitated by densitometry

(Scion Image, Frederick, MD).

2.11. Quantitative real time RT-PCR for c-Ha-ras

mRNA expression

RNA for the RT-PCR reaction was extracted as described

before (Qiagen). Quantitative RT-PCR for c-Ha-ras was

performed using the TaqMan procedure and a Perkin-Elmer/

Applied Biosystems Division 7700 sequence detector. The
Fig. 1. Apoptosis and cellular proliferation are modulated in WR-21 cells contai

increasing concentrations of resveratrol for 24 h. For BrdU incorporation (closed

and analysis by ELISA. For apoptosis (open triangles), cultures were treated for 24

as percent response compared to respective control and are meansFS.E. from thr
forward primer sequence was CTACGGCATCCCCTA-

CATCG and reverse primer sequence was TGTAGAAGG-

CATCCTCCACTCC. The sequence of the probe was

ACCTCGGCCAAGACCCGGCA.
3. Results

3.1. Resveratrol inhibits cellular proliferation and induces

apoptosis and necrosis

Preincubation of WR-21 cells with increasing concen-

trations of resveratrol (1–1000 AM) significantly reduced

cellular proliferation as indicated by BrdU incorporation

into DNA by 80% at concentrations greater than 30 AM
(Fig. 1). We noted a concomitant increase in apoptosis by

60% from 10 to 100 AM followed by a decline of both

parameters at higher concentrations. For all subsequent

experiments, we selected a resveratrol concentration of

50 AM, which occurred on the linear portions of the curves

and was within the concentration range routinely used by

others. We corroborated apoptosis by agarose gel electro-

phoresis (Fig. 2A). DNA fragmentation, characteristic of

apoptosis, was evident in resveratrol-treated cells but not in

control cultures. In addition to apoptosis, we observed

increased necrosis as an alternate form of cell death as

determined by the cytoplasmic release of LDH to medium

characteristic of plasma membrane disruption. Lactate

dehydrogenase release in resveratrol-treated cells (4.5%)

was significantly increased by threefold compared to

controls (1.5%) (Fig. 2B). There were no differences

between control cultures or cells treated with the DMSO

vehicle control.
ning a mutated human Ras oncogene incubated overnight with or without

squares), cultures were pulsed for 24 h with BrdU prior to harvest, fixation

h, harvested, fixed and analyzed by the TUNEL method. Data are expressed

ee to five independent experiments.



Fig. 2. Resveratrol induces apoptosis and necrosis. Agarose gel electro-

phoresis of DNA extracted from cells incubated with medium alone or

50-AM resveratrol. DNA banding indicates apoptosis (panel A). Lactate

dehydrogenase release by cells incubated in medium alone or media with

DMSO vehicle (0.2%) or 50-AM resveratrol. Data indicate cytoplasmic

LDH release as a percentage of total LDH activity (media + cellular), and

are meansFS.E. from three independent experiments (n =5) (panel B).

L.F. Young et al. / Journal of Nutritional Biochemistry 16 (2005) 663–674 667
3.2. Resveratrol modulates gene expression associated with

proliferative, apoptotic and cell cycle pathways

Resveratrol modulated gene expression of major path-

ways of cellular proliferation, apoptosis and cell cycle as

determined by independent macroarray gene expression

arrays. We selected genes of interest based on three criteria

including (1) reproducibility between independent experi-

ments, (2) uniformity of responses in the same direction and

(3) observation of responses with similar magnitudes

(within an order of magnitude).

Resveratrol up-regulated numerous genes associated with

signal transduction pathways (Fig. 3). Genes that were

notably up-regulated were cathepsin D (Ctsd), mouse 3T3

cell double minute 2 (Mdm2), ornithine decarboxylase

(ODC) and early growth response 1 (Egr1), which were

increased four-, five-, two-, and threefold, respectively. We

did not observe resveratrol-induced suppression of any of

the genes associated with this macroarray.

Resveratrol also up-regulated genes associated with

apoptotic pathways (Fig. 4). Birc5, Cash, and Mcl-1 are

inhibitors of apoptosis and were up-regulated up to
sevenfold after resveratrol treatment. Mdm2 appeared on

the apoptosis arrays and induction was corroborated since

expression increased ninefold. RPA-like, a p53 responsive

gene, was also up-regulated by fourfold.

Resveratrol increased the expression of genes associated

with cell cycle (Fig. 5). The most notable increases in gene

expression were cyclin D (Ccnd1) and cyclin G (Ccng),

which both increased by approximately fourfold. Given the

pivotal importance of Mdm2, it appeared on this third set of

independent arrays and was increased by sixfold, but neither

p53 nor Gadd45a, a p53-dependent gene, were differentially

expressed at the 24-h time point. Gene expression of Mad2l

was decreased by threefold.

3.3. Resveratrol induces G2/M cell cycle arrest

Since genes associated with cell cycle were altered, we

next analyzed cells by flow cytometry to determine whether

resveratrol had any effects on cell cycle kinetics or

distribution of cells in the cell cycle. The results indicated

a clear 50% reduction of cells in G1/G0 and a marked 400%

increase in cells accumulating in the G2/M phase. Cell

numbers in S-phase were not different between control and

resveratrol-treated cultures (Fig. 6).

3.4. Resveratrol does not alter Ras protein or mRNA

expression after 24 h incubation

In view of accumulating data, the next question centered

on whether Ras expression at either the mRNA or protein

levels would be altered at the 24 h time point. Western blot

analysis indicated no differential changes in expression of

p21ras protein (Fig. 7A) between groups. Data were

normalized to the internal housekeeping gene h-actin
(Fig. 7B). At the mRNA level, we analyzed samples by

quantitative real time RT-PCR and found no resveratrol-

related effect on Ras oncogene expression (Fig. 7C).
4. Discussion

The current project was designed to reveal the effect of

resveratrol on ras-mediated gene expression in the context

of neoplasia. In this study, we noted clear induction of

apoptosis and concomitant inhibition of cellular prolifera-

tion in cells incubated with resveratrol with some evidence

of cytotoxicity. Cells also accumulated in the G2/M phase of

the cell cycle at 24 h with clear induction of genes

associated with a p53-mediated effect. However, oncogenic

p21ras mRNA and protein were similarly expressed in

control and resveratrol-treated cells at 24 h. We also

observed altered gene expression associated with apoptotic,

cell signaling and cell cycle pathways.

Resveratrol potently inhibited cellular proliferation and

induced apoptosis in novel WR-21 cells in agreement with

the results of others. For example, resveratrol inhibited

cellular proliferation and apoptosis in promyelocyte leuke-

mia cells (HL60), MCF-7 human breast cancer cells, Caco-2



Fig. 3. Resveratrol up-regulates genes associated with pathways of signal transduction. Cells were incubated with media (0.2% DMSO vehicle) alone or with

50-AM resveratrol for 24 h. After harvest, RNAwas extracted and quantitated to generate separate probes by PCR using reverse transcriptase. Each membrane

was independently incubated with probe overnight, washed and exposed to film before densitometric quantitation (panel A). A key, indicating the location of

each gene on the macroarray, is pictured in panel B. Expression differences were calculated by the ratio of resveratrol-treated membrane intensity (of specific

gene spot) to its internal housekeeping gene and divided by the ratio of the control membrane intensity (same gene spot) to its internal housekeeping gene.

GAPDH and h-actin were used to calculate response ratios (RRs). RRb1 indicates resveratrol inhibition of gene expression and RRN1 indicates resveratrol

induction of gene expression (panel C).
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enterocytes and two human prostatic cell lines (pPANC-1

and AsPC-1) over identical times and concentrations

[24–27]. Inhibitory concentrations (IC50) have been

reported over a range of 5–150 AM in various cell types

and overlap with the concentration of resveratrol used in our

study [27–30]. We also noted cytotoxicity at 50 AM as

revealed by increased LDH release in agreement with others

using keratinocytes, HL-60 cells and prostate cells over an

identical concentration range [24]. Thus, resveratrol induced

both apoptosis and necrosis, which is consistent with the

notion that the processes typically occur simultaneously to

some extent.
Our results indicated a clear G2/M arrest in WR-21 cells.

In human leukemia and HT-29 colon cancer cells, resver-

atrol inhibited proliferation and induced apoptosis that was

preceded by dose-dependent cell cycle arrest in the G2/M

phase correlating with increased expression of cyclins A and

B, although in another study progression from S to G2

phase in Caco-2 cells, was perturbed at 50 AM resveratrol

[27,28,31]. In other cell lines of various histogenetic origin

including fibroblasts, mouse mammary epithelial cells,

human breast, colon, and prostate cells, resveratrol (IC50

20–100 AM) reduced the percentage of cells in G2/M phase

and increased cells in S phase often with decreases in cyclin



Fig. 4. Resveratrol up-regulates genes associated with apoptotic pathways. Samples were processed as described in Fig. 3 legend.
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D1 expression [29,30]. In HL-60 promyelocytes, resveratrol

(30 AM) arrested cellular proliferation in the S/G2 phase

transition with the absence of cells in G2/M. Instead, cells

accumulated in G1 and S phases after 24 h with increases in

expression of cyclins A and E [32]. Our results uniquely

demonstrate increases in cyclins D and G, but not A and E,

and arrest in G2/M, and not S, as demonstrated by others

suggesting a cell-specific, resveratrol-dependent or interac-

tive effect. Our results also suggest, in accordance with

numerous reports, that p53 may function at the G2/M

checkpoint in a cell type-specific manner [33].

The putative anticarcinogenic properties of wine poly-

phenols such as resveratrol occur largely through p53-
dependent apoptosis and cell cycle arrest [34]. We noted

clear induction of downstream effectors of p53 expression,

but not p53 itself, at 24 h strongly supporting the

involvement of p53 signaling. In HepG2 and Hep3B, two

human liver cancer lines, resveratrol induced apoptotic

death through a p53-mediated pathway [35–37]. Addition-

ally, resveratrol suppressed cell transformation and induced

apoptosis through a p53-dependent pathway in fibrob-

lasts and murine epidermal cells [38]. In another study,

resveratrol induced apoptosis via a p53-mediated effect

in fibroblasts after the induced expression of oncogenic

H-ras [39]. Ras functions via a MAPK signal transduction

pathway to increase p53 expression, serine-15 phosphory-



Fig. 5. Resveratrol modulates genes involved in cell cycle progression. Samples were processed as described in Fig. 3 legend.
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lation, p53-DNA binding and p53-dependent apoptosis in

papillary thyroid, follicular thyroid carcinoma cell lines and

DU145 cells [40,41]. Although we did not observe a

difference in ras expression, interaction of resveratrol with

constitutive oncogenic Ras expression may have modified

and contributed to the observed response.

To examine gene expression, we analyzed differences

using nylon-based membrane arrays targeting specifically

apoptosis, cell cycle and signaling pathways. We noted up-

regulation of several genes associated with p53-mediated

apoptosis and cell cycle arrest. Birc5, or survivin, typically
decreases in apoptosis, but we noted a ~2.5-fold increase. It

is noteworthy that Birc5 regulates cellular division and

functions as a chromosomal passenger protein required

during mitosis in the G2/M phase suggesting involvement in

cell cycle arrest [42]. The role of survivin in apoptosis is

unclear and studies have defined a novel p53-survivin

signaling pathway activated by DNA damage that results in

decreased survivin, cell cycle arrest and apoptosis involving

Mdm2 cleavage [43,44]. We also noted three- to fourfold

increases in CASH, also known as usurpin, and Mcl-1, a

bcl-2 family protein. Mcl-1 is cleaved during apoptosis



Fig. 6. Resveratrol alters cell cycle dynamics of WR-21 cells. Cells were

incubated 24 h with or without resveratrol and harvested as described

previously. Cells were stained with PI and analyzed by flow cytometry.

Fig. 6 displays quantitation of data expressed as percent of cells in each

phase of cell cycle.

ig. 7. Resveratrol treatment does not alter p21ras protein or mRNA

xpression. Cells were analyzed by Western blotting to detect c-Ha-ras

ncoprotein expression as described in Materials and Methods. The

utoradiograph shows representative samples from control (0.2% DMSO

ehicle) and resveratrol-treatedWR-21 cells (panel A). Data were quantitated

y densitometry using Scion Image software and are normalized to h-actin
xpression. Data are meansFS.E. each conducted in six independent

xperiments (panel B). Ras mRNA expression was analyzed by real-time

T-PCR using ribosomal 18S as an internal control. Representative results

om three independent experiments are shown (panel C).
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producing a proapoptotic molecule induced by survival and

differentiation signals such as cytokines and growth factors,

that is, Ras [45]. Evidence also exists that MCl1 binds

PCNA causing cell cycle arrest. Lastly, RPA-like, replica-

tion protein A was up-regulated by fourfold and is a major

eukaryote single-stranded DNA binding protein required for

DNA replication, repair (nucleotide excision) and recombi-

nation-DNA metabolism [46]. Moreover, RPA-like may

function in DNA damage responses through p53 up-

regulation, p53 inactivation and decreased binding of p53

protein [47]. Collectively, numerous downstream effectors

of p53 were modulated supporting a p53-mediated effect.

We next analyzed genes associated with cell signaling

pathways. Cathepsin D, a protease, was up-regulated by

fivefold and is often associated with metastases. However,

resveratrol can up-regulate expression of cathepsin D by

50–100% in numerous cell lines, although there appears to

be no correlation between Ha-ras expression and cathepsin

activity [48,49]. Endocytosis and exocytosis of cathepsin

B and targeting of lysosomal proteases may be regulated

by ras and ras-related proteins in multiple cell types

including fibroblasts and epithelial cells [50,51]. Ornithine

decarboxylase activity was up-regulated 2.5-fold after

resveratrol exposure in contrast to reports indicating up

to twofold reductions in Caco-2 cells [52]. Ras can induce

ODC activity, and in fact, oncogene overexpression in

ras12V mutant NIH3T3 cells increases ODC activity by

20-fold [53]. Moreover, ODC is induced by growth

factors, estrogens and potentially phytoestrogenic resvera-

trol promoting G1-S phase progression. Although purport-

edly non-DNA damaging, resveratrol can interfere with

DNA replication and cell division and activate Egr1

transcription supporting cell cycle arrest rather than

DNA damage as an inducer [54,55]. Egr1 expression

increased fourfold in this report. Resveratrol (50 AM)
induced Egr1 expression N3-fold in human embryonic

kidney cells and induced apoptosis by stimulating p53

synthesis [56,57]. Although Egr1 is growth promoting,

Egr1 can be proapoptotic due to increased p53 synthesis

by direct activation of the p53 promoter, enhanced binding

of the transcription factor c-jun, and transactivation of the

PTEN gene [56].

Cell cycle progression is regulated by regulatory cyclins,

cyclin-dependent kinases and cyclin-dependent kinase

inhibitors [58]. In this study, cyclin D was unexpectedly

increased fourfold. Overexpression is a common observa-

tion associated with human tumorigenesis and metastases.

Cyclin D couples extracellular signals to cell cycle and, upon
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mitogenic stimulation, for example, Ras, is activated, and

the cells progress from G0 to G1. Thus, resveratrol, which

typically decreases cyclin D expression, may be facilitating

increased ras-mediated cyclin D expression [27].

In this study, we noted a clear decrease in cells at the G0/

G1 phase, a concomitant shift of cells to G2/M and no

difference in S phase suggesting a cell cycle block at G2/M.

In other studies, resveratrol strongly inhibited cell growth in

a dose- and time-dependent manner through increased

expression of cyclins A, E and B1, and accumulation in

G0/G1, G2/M and S phases in human melanoma cells [59].

Resveratrol also induced arrest in S phase in several cancer

cell lines including MCF-7, HL60 and SW480 [30]. Similar

to our data, resveratrol inhibited proliferation and disrupted

cell division in HT29 colon cancer cells with accumulation

of cells in G2 phase [31]. Resveratrol and other stilbenes

have been shown to induce G2/M arrest as clearly

demonstrated in this study [60].

Our data indicate increased cyclin G expression by

fivefold, which functions in G2/M transition control and

increases apoptosis [61]. Cyclin G has also been identified

as a target gene of p53, is Mdm2 dependent and expression

is increased after p53 induction [62,63]. Specifically, cyclin

G is a regulatory component of the PP2A holoenzyme,

which activates Mdm2 through dephosphorylation, and

subsequently inhibits p53 expression [64]. Overexpression

of cyclin G also increases apoptosis. Mdm2 is up-regulated

by p53 and is an autoregulatory inhibitor of p53 targeting

its destruction [65]. Resveratrol consistently increased by

N 4-fold Mdm2 expression and cyclin G expression in

WR-21 cells, but not p53 or p21cip/waf, at 24 h. p53 activation

typically induces a G1 arrest through induction of p21cip/waf

and concurrent inhibition of cyclin D. The absence of p53

and p21cip/waf expression is likely due to preferential G2/M

arrest as noted here, instead of G1 arrest, the temporal nature

of protein expression, and selected time point.

Numerous studies demonstrate that p53 and cyclin G

function at the G2/M checkpoint [61]. This checkpoint is

activated when DNA synthesis is blocked and prevents

segregation of damaged or incompletely synthesized DNA.

Resveratrol effectively inhibits ribonucleotide reductase,

which catalyzes reduction of ribonucleotides into

corresponding deoxyribonucleotides, and prevents DNA

synthesis and cellular proliferation [66]. p53 is also

involved in spindle checkpoint that blocks rereplication

of DNA when the mitotic spindle has been damaged by

inhibiting entry into the S phase. Our results indicate no

difference in DNA synthesis, although a potent inhibition

of DNA replication was observed when cells were

incubated with resveratrol. Although p53 was not up-

regulated by resveratrol at 24 h, we did observe a marked,

increased expression of cyclin G, which has not been

reported before. This suggests an interaction among cyclin

G, p53 and resveratrol.

Activation of Ras during normal cell signaling or

through mutation in neoplasia can suppress p53, and as a
result, facilitate cellular proliferation and survival. Subse-

quently, Ras-induced Mdm2 expression may block p53

from inducing apoptosis or growth arrest in the early

stages of tumor development allowing coexistence of Ras

mutations and wild-type p53. Elevated mdm2 protein

levels induced by Ras activation may bind mutated forms

of p53 and abolish any remaining p53 function [20]. The

clear expression of oncogenic p21ras suggests that Ras

may be involved in the observed protective effects

through, perhaps, interaction with resveratrol. Thus,

although no changes occurred in p21ras protein or mRNA

levels at 24 h, alterations and interactions at the functional

level are possible. It will be critical to determine

alterations in posttranslational modification of the p21ras

protein, alterations in intracellular mobilization and inter-

actions with resveratrol as well as the temporal expression

of proteins associated with apoptosis, cellular proliferation

and cell cycle.
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